Structure Reports

Online
ISSN 1600-5368

Methyl 2-amino-4-(3-nitrophenyl)-4Hbenzo[h]chromene-3-carboxylate

Shi-Gui Tang, ${ }^{\text {a }}$ Qing-Gang Tang, ${ }^{\text {b }}$ Wen-Yuan Wu, ${ }^{\text {b }}$ Cheng Guo ${ }^{\text {b }}$ * and Chun-Xiang Jib
${ }^{\text {a College of Life Sciences and Pharmaceutical }}$ Sciences, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Applied Chemistry, College of Science, Nanjing University of Technolgy, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China

Correspondence e-mail: guocheng@njut.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.024$
$w R$ factor $=0.077$
Data-to-parameter ratio $=14.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]The title compound, $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$, was synthesized by the reaction of 1-naphthol with methyl cyanoacetate and 3nitrobenzaldehyde in methanol under microwave irradiation. Intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into chains along the b axis and adjacent chains are connected via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Benzopyrans and their derivatives occupy an important place in the realm of natural and synthetic organic chemistry because of their biological and pharmacological properties (Morianka \& Takahashi, 1977), such as antisterility (Brooks, 1998) and anticancer activities (Hyana \& Saimoto, 1987). In addition, polyfunctionalized benzopyrans constitute the structural unit of a number of natural products and, because of the inherent reactivity of the inbuilt pyran ring, they may serve as versatile synthons (Hatakeyama et al.,1988). We report here the crystal structure of the title compound, (I).

(I)

In the molecule of (I) (Fig. 1), all bond lengths and angles are normal. An intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 1) determines the orientation of the carboxylate group. The pyran ring adopts a flattened envelope conformation, with atom C11 displaced by 0.151 (2) \AA from the mean plane through atoms $\mathrm{C} 1, \mathrm{C} 10, \mathrm{O} 1, \mathrm{C} 18$ and C 19 . The dihedral angle between the $\mathrm{C} 1-\mathrm{C} 10 / \mathrm{O} 1 / \mathrm{C} 18 / \mathrm{C} 19$ and $\mathrm{C} 12-\mathrm{C} 17$ planes is $82.30(4)^{\circ}$.

In the crystal structure, intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link the molecules into chains along the b axis. Adjacent chains are connected via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). A $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction involving the $\mathrm{C} 12-\mathrm{C} 17$ benzene ring is also observed.

Experimental

Compound (I) was prepared by the reaction of 1-naphthol (5 mmol) with methyl cyanoacetate (5 mmol) and 3-nitrobenzaldehyde
(5 mmol) in methanol (2 ml) by using piperidine (0.5 mmol) as catalyst under microwave irradiation for 8 min . The pure compound (I) was obtained by recrystallization from methanol (m.p. 416418 K). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{5}$
$M_{r}=376.36$
Triclinic, $P \overline{1}$
$a=8.290(16) \AA$
$b=9.2570(19) \AA$
$c=13.203(3) \AA$
$\alpha=71.84(3)^{\circ}$
$\beta=7.39(3)^{\circ}$
$\gamma=82.73(3)^{\circ}$

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.963, T_{\text {max }}=0.984$
3739 measured reflections

Refinement

Refinement on F^{2}

$$
V=932.8(4) \AA^{3}
$$

$Z=2$
$D_{x}=1.340 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.077$
$S=1.04$
3658 reflections
254 parameters

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and the intramolecular hydrogen bond is indicated by a dashed line.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXTL.

The authors thank the Center for Testing and Analysis, Nanjing University, for the support.

References

Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Hatakeyama, S., Ochi, N., Numata, H. \& Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202-1024.
Hyana, T. \& Saimoto, H. (1987). Jpn Patent No. JP621812768.
Morianka, Y. \& Takahashi, K. (1977). Jpn Patent No. JP52109000.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

[^0]: © 2006 International Union of Crystallography All rights reserved

